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Partial Discharge Pattern Recognition of
Current Transformers Using an ENN

Mang-Hui Wang, Member, IEEE

Abstract—This paper proposes an extension-neural-network
(ENN)-based recognition method to identify the partial-discharge
(PD) patterns of high-voltage current transformers (HVCTs).
First, a commercial PD detector is used to measure the three-di-
mensional (3D) PD patterns of cast-resin HVCTs, then three data
preprocessing schemes that extract relevant features from the
raw 3-D PD patterns are presented for the proposed ENN-based
classifier. The ENN proposed in the author’s recent paper citation
combines the extension theory with a neural-network architecture.
It uses extension distance instead of using Euclidean distance (ED)
to measure similarities between tested data and cluster centers;
it can implement supervised learning and give shorter learning
times and simpler structures than traditional neural networks.
Moreover, the ENN has the advantages of high accuracy and
noise tolerance, which are useful in recognizing the PD patterns
of electrical apparatus. To demonstrate the effectiveness of the
proposed method, comparative studies with a multilayer multi-
layer perceptron (MLP) are conducted on 150 sets of field-test PD
patterns of HVCTs with rather encouraging results.

Index Terms—Current transformers (CTs), extension neural
network (ENN), partial discharge (PD).

I. INTRODUCTION

H IGH-VOLTAGE insulation in operating electrical appa-
ratus gradually deteriorates due to thermal, mechanical,

electrical, and environmental stresses [1]. The high-voltage cur-
rent transformer (HVCT) is essential equipment for measuring
current signals in power systems. Failure of an HVCT may
cause the wrong current signals, and cause a series of mistakes
in power-supply operation. Therefore, it is of great importance
to detect incipient failures in HVCTs as early as possible, so
that they can be switched safely and improve the reliability of
the power systems. Partial discharges (PDs) are a symptom and
a cause of high insulation deterioration; it is a sudden local
displacement of electrons and ions in an insulator under the
pressure of a strong electric field [2]–[4]. The quantities of PD
can carry information about insulating system conditions to the
outside world by electrical signals. PD testing is an important
tool for the implementation of predictive or condition-based
maintenance. Therefore, measuring and recognition techniques
for PD patterns in electrical apparatus have attracted consider-
able attention from electrical manufacturers and power utilities
[5]–[7].
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The main parameters of PD patterns are phase angle ,
discharge magnitude , and frequency [8], [9]. Recently,
detailed and precise information about these quantities has be-
come obtainable, and the three-dimensional (3-D) patterns have
been shown by virtue of advanced measurement equipment
with high-speed data processing. The shape of the PD pattern
is characteristic for each type of defect. Therefore, an expert
can use pattern recognition to identify the different defect types
according to the 3-D pattern. The automated recognition of
PD patterns has been widely studied recently. Various pattern
recognition techniques have been proposed, including, expert
systems [10], fuzzy clustering [11], and neural networks (NNs)
[12]–[15]. The expert system and fuzzy approaches require
human expertise, and have been successfully applied to this
field. However, there are difficulties in acquiring knowledge
and in maintaining the database. NNs can directly acquire
experience from the training data, and overcome some of the
shortcomings of the expert system. However, the training data
must be sufficient and compatible to ensure proper training
in traditional NN; its convergence of learning is influenced
by the network topology and values of learning parameters.
A further limitation of the traditional NN is the inability to
produce linguistic output, because it is difficult to understand
the content of network memory.

To improve the performances of traditional clustering tech-
nology, three preprocessing schemes that extract relevant
features from the raw PD patterns with an extension-neural-net-
work (ENN)-based clustering method are proposed for PD
pattern recognition of HVCT in this article. The ENN has been
proposed in the author’s recent paper [16], [17]; it uses an
extension distance instead of using Euclidean distance (ED)
to measure the similarities between tested data and cluster
domain. It can quickly and stably learn to categorize input pat-
terns and permit adaptive processes to access significant new
information. Moreover, the ENN has shorter learning times and
a simpler structure than traditional NNs. To demonstrate the
effectiveness of the proposed method, 150 sets of field-test PD
patterns from 23-kV cast-resin type CTs were tested. Results
of the studied cases show that the proposed method is suitable
as a practical solution.

II. THEORY OF THE ENN

In this world, there are some clustering problems where fea-
tures are defined as a range of values. For example, the safe
operation voltages of a specified motor may be between 200
and 240 V. Younger can be defined as a cluster of people be-
tween the ages of 14 and 24. These problems are difficult to im-
plement with appropriate clustering methods by current NNs.
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Fig. 1. Structure of extension neural network (ENN).

Therefore, a new topology of neural networks, called ENN that
combines extension theory [18] with NNs, has been proposed
to solve these problems [16], [17]. In other words, the ENN
permits that clustering problems have a range of features, su-
pervised learning, continuous input, and discrete output. This
new NN is a first combination of extension set theory and NN.
The extension theory provides a novel distance measurement for
classification, and the NN can embed the salient features of par-
allel computation power and learning capability.

A. Structure of the ENN

In this clustering problem of PD recognition, PD features and
associated defect types cover a range of values. Therefore, using
the ENN is most appropriate for PD recognition of HVCTs. The
schematic structure of the ENN is depicted in Fig. 1. It com-
prises the input layer and the output layer. The nodes in the
input layer receive the input features and use a set of weighted
parameters to generate an image of the input pattern. In this net-
work, there are two connection values (weights) between input
nodes and output nodes; one connection represents the lower
bound, and the other connection represents the upper bound for
this classical domain of the features. The connections between
the th input node and the th output node are and .
This image is further enhanced in the process characterized by
the output layer. The output layer is a competitive layer. There is
one node in the output layer for each prototype pattern, and only
one output node with nonzero output to indicate the prototype
pattern that is closest to the input vector. The operation mode
of the proposed ENN can be separated into the learning phase
and the operation phase. The learning algorithm of the ENN is
discussed in the next section.

B. Learning Algorithm of the ENN

The learning of the ENN can be seen as supervised learning;
the purpose of learning is to tune the weights of the ENN to
achieve good clustering performance or to minimize the clus-
tering error. Before the learning, several variables have to be de-

fined. Let the training set ,
where is the total number of training patterns, is an input
vector to the NN and is the corresponding target output. The
th input vector is , where is the total

number of the features. To evaluate the learning performance,
the error function is defined as

(1)

where represents the desired th output for the th input pat-
tern, represents the actual th output for the th input pattern.
The detailed supervised learning algorithm can be described as
follows:

Step 1) Set the connection weights between input nodes and
output nodes according to the range of classical do-
mains. The range of classical domains can be di-
rectly obtained from previous experience, or deter-
mined from training data as follows:

(2)

for

(3)

Step 2) Read the th training pattern and its cluster
number

(4)

Step 3) Use the extension distance to calculate the distance
between the input pattern and the th cluster as
follows:

for (5)

The proposed extension distance is a new distance measure-
ment; it can be graphically presented as in Fig. 2. The pro-
posed can describe the distance between the x and a range

, which is different from the traditional Euclidean dis-
tance. From Fig. 2, we can see that different ranges of classical
domains can arrive at different distances due to different sen-
sitivities. This is a significant advantage in classification appli-
cations. Usually, if the feature covers a large range, the data re-
quirement is fuzzy or low in sensitivity to distance. On the other
hand, if the feature covers a small range, the data precision re-
quirement and sensitivity to distance are high.

Step 4) Find the , such that . If
, then go to Step 6; otherwise, go to Step 5.

Step 5) Update the weights of the th and the th clusters
as follows:

(6)
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Fig. 2. Proposed extension distance (ED).

for (7)

where is a learning rate, set to 0.1 in this paper.
From this step, we can clearly see that the learning
process is only to adjust the weights of the th and
the th clusters.

Step 6) Repeat Steps 2–5, if all patterns have been classi-
fied; then a learning epoch is finished.

Step 7) Stop, if the clustering process has converged, or the
total error has arrived at a preset value; otherwise,
return to Step 3.

It should be noted that the proposed ENN can take human
expertise before the learning, and it can also produce meaningful
output after the learning, because the classified boundaries of the
features are clearly determined.

C. Operation Phase of the ENN

Step 1) Read the weight matrix of the ENN.
Step 2) Read a testing pattern

(8)

Step 3) Use the proposed extension distance ( ) to cal-
culate the distance between the tested pattern and
every existing cluster by (5).

Step 4) Find the , such that , and
set the to indicate the cluster of the tested
pattern.

Step 5) Stop, if all of he tested patterns have been classified;
otherwise, go to Step 2.

III. ENN-BASED PD PATTERN RECOGNITION SCHEMES

A. PD Measuring System

According to the IEC60270 standard [19], a partial-discharge
measuring system for HVCTs has been set up in the Taiwan
Electric Research and Testing Center (TERTC), an independent
electrical testing institute in Taiwan. The structure of the PD
measuring system is shown in Fig. 3. It includes a commercial

Fig. 3. PD measuring system diagram.

Fig. 4. Practical experimental circuits of HVCT PD test.

PD detector (TE 571), PD pattern analyzer’ capacitor coupling
circuit, a high-voltage control system, and the tested HVCT.
The practical experimental circuit in the shielded laboratory is
shown in Fig. 4. In this paper, the tested object is an EWF-20DB
type of cast-resin HVCT that uses epoxy resin for HV insulation.
The rated voltage and current of the tested HVCT are 23 kV
and 60 A/5 A, respectively. For testing purposes, four exper-
imental models of cast-resin HCVTs with artificial insulation
defects were purposely manufactured by an electrical manufac-
turer. The four PD models include no defect, HV corona dis-
charge, low-voltage (LV) coil PD, and high-voltage (HV) coil
PD. Fig. 5 shows a typical PD waveform in the window of the
PD detector, which is most useful for an experienced maintained
engineer. In the testing process, all of the measuring data are dig-
itally converted in order to store them in the computer memory.
Then, the PD pattern analyzer can automatically recognize the
different defect types of the testing objects according to the dig-
ital PD signal with the setup program.

B. PD Pattern Preprocessing

The basic parameters to characterize PD patterns are phase
angle , discharge magnitude , and frequency . These quan-
tities can be performed 3-D patterns by virtue of advanced pro-
grams, such as MATLAB. In previous studies, directly using the
matrix’s values of 3-D patterns with the ANN for PD recogni-
tion [14], the main drawbacks are that the structure of the ANN

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on October 29, 2008 at 08:33 from IEEE Xplore.  Restrictions apply.



WANG: PARTIAL DISCHARGE PATTERN RECOGNITION OF CURRENT TRANSFORMERS USING AN ENN 1987

Fig. 5. Typical PD waveform.

has a great number of neurons with connections, and time-con-
suming in training. To improve the performance, three prepro-
cessing schemes that extract relevant features from the raw PD
patterns are presented for the proposed ENN-based classifier.
The detailed data process is shown in Fig. 6; the output vector
of the ENN-based classifier is the defect type of the PD pattern,
and the input vector is the values of ten phase windows. The
width of the phase window is set to 36 . The values of every
phase window can be calculated as follows:

Scheme I) mean value of the total discharge magnitude

(9)

Scheme II) mean value of the maximum discharge magni-
tude

(10)

for (11)

Scheme III) maximum discharge magnitude

(12)

for

(13)

When the preprocessing of the PD pattern has been com-
pleted, then the learning and identifying stages of the ENN can
be started for PD recognition.

C. ENN-Based PD Recognized Method (EPDRM)

The proposed EPDRM has been successfully implemented
using PC-based software for PD recognition for HVCTs. The
overall operation flowchart is shown in Fig. 7. Using the pro-
posed EPDRM can be simply described as follows.

Fig. 6. PD pattern classification.

Step 1) Set up the training pattern.
Step 2) Set up the structure of the ENN that has ten input

nodes and four output nodes in this paper.
Step 3) Train the ENN using the proposed learning algo-

rithm in Section II-B.
Step 4) Go to Step 3, if the training process is not finished;

otherwise, go to Step 5.
Step 5) Save the weight vector of the trained ENN.
Step 6) Use the trained ENN to identify the defect types of

HVCTs.

Basically, the learning time of the EPDRM is shorter than the
traditional neural-based methods due to the fact that initial
weights of ENN can be directly determined from training data
according to the upper bound and lower bound of input features
of PD pattern.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the proposed method, 150 sets of field test PD
patterns were used to test the proposed EPDRM, the four defect
models of 23-kV cast-resin HCVTs include the no-defect, HV
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Fig. 7. Overall operation flowchart of the EPDRM.

corona discharge, LV coil PD, and HV coil PD. Some experi-
mental results are shown as follows.

A. Results of the Data Preprocessing

As stated in Section III-B, Fig. 8 shows the typical input pat-
tern of the four defect models, which have been processed by
the three schemes. It should be noted that the input patterns of
scheme I are similar to the input patterns of scheme II, and the
four defect models have quite different patterns through data
processing. Usually, the input patterns of no defect have the
lower discharge magnitude than the other PD defects in all ob-
served phase windows; the HV corona discharge has a higher
discharge magnitude for the 7 and 8 windows. The LV coil PD
has the higher discharge magnitude for the 1–3 and 5–8 win-
dows. Conversely, the HV coil PD has the higher discharge mag-
nitude for the 1–3, 5–8, and 10 windows. These features of input
patterns will be most useful for PD recognition. To compare
the three schemes, if the ENN-based PD recognition system
randomly chooses 80 instances from the field-test data as the
training data set, and the rest of the instances of the field-test
data are the testing data set. Table I shows the recognized re-
sults of the proposed EPDRM with different input patterns. It is
clear that the accuracy rates of the proposed EPDRM are quite
high with about 100% and 97% for training and testing sets,
respectively. It is obvious that the ENN has strong generalized
capability. The recognized results of schemes I and II are almost
of the same accuracy due to similar input patterns.

B. Performance Evaluation of the Proposed EPDRM

To evaluate the performance of the proposed EPDRM,
Table II shows the comparison of the experimental results of
the proposed method with the MLP-based method [14] that is
directly using the matrix’s values of 3-D pattern for PD recog-
nition. It should be noted that the structure of the proposed
ENN is very simple, only 14 nodes and 80 connections are

Fig. 8. Typical input patterns of four PD defects. (a) No defect. (b) HV corona
discharge. (c) LV coil PD. (d) HV coil PD.

TABLE I
TRAINING RESULTS FOR THE ENN WITH DIFFERENT INPUT PATTERNS

needed. Contrarily, the structure of the MLP-based method
needs about 444 nodes and 16 160 connections. Moreover, the
proposed ENN-based method also permits fast adaptive pro-
cessing for a large amount of training data or new information,
because the learning of the ENN is only to tune lower bounds
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TABLE II
COMPARISON OF THE CLASSIFICATION PERFORMANCE OF VARIOUS METHODS

TABLE III
RECOGNIZED PERFORMANCES OF DIFFERENT METHODS

WITH DIFFERENT PERCENTAGES OF ERRORS ADDED

and upper bounds of the excited connections. On the other
hand, the ENN is not only taking expert experience before
learning, but can also produce meaningful output after learning,
because the optimal classified boundariesedtools of the features
are clearly determined. It can be seen from Table II that the
proposed ENN has a shorter learning time than the multilayer
perceptron (MLP), the ENN only spends 1-epoch or 0.1 s
of CPU time. Although the PD recognition system is trained
offline, the training time is not a critical point to be evaluated.
It is an index, however, implying in some degree the efficiency
of the algorithm developed, which is rather beneficial when
implementing the PD recognition methods in a microcomputer
for a real-time PD detecting device or portable instrument.

C. Tests of Error-Containing Data

In this experiment, if the training data set contains 150
training instances (i.e., the full field-test data) and the testing
data set is equal to the training data set, containing 150 training
instances. The input data of a PD recognition system would
unavoidably contain some noise and uncertainties. The sources
of error include environmental noise, transducers, human mis-
takes, etc., which could lead to data uncertainties. To take into
account the noise and uncertainties, 150 sets of testing data
were created by adding 5% to 30% of random, uniformly
distributed, error to the training data to appraise the fault-tol-
erant abilities of the proposed EPDRM. The test results using
different amounts of errors added are given in Table III for the
different recognition methods. Usually, the error containing
data indeed degrades the recognition capabilities in proportion
to the amounts of error added. This table shows that these
methods all bear remarkable tolerance to the errors contained
in the data. The proposed method with scheme II has a sig-
nificantly higher recognition accuracy of 100% with 20%
errors added, but the accuracy of scheme III is lower than the

other schemes. However, the proposed methods show good
tolerance to added errors, and have high accuracy rates of 89%
and 92% in extreme error of 30%. Contrarily, the accuracy of
the MLP-based method is only 80% under the same conditions.

V. CONCLUSION

This paper presents a novel PD recognition method based on
the ENN for PD recognition of cast-resin HVCTs and three data
preprocessed schemes for PD patterns. According to the exper-
imental results, scheme II of data preprocessing is suggested
for PD recognition due to the higher accuracy and error toler-
ances. Compared with the MLP-based recognition method, the
structure of the ENN is simpler, and the learning time is faster
than MLP-based method. Moreover, the proposed ENN-based
recognition method also permits fast adaptive processing for a
new PD defect, because it only tunes the boundaries of classified
features or adds a new neural node. It is feasible to implement
the proposed method on a microcomputer for a portable PD de-
tecting device; it can be also used in the HV transformers and
HVPT PD recognition if we can provide the sufficient training
patterns. From the tested examples, the proposed method has
a significantly high degree of recognition accuracy and shows
good tolerance to errors added. This new approach merits more
attention, because ENN deserves serious consideration as a tool
in PD recognition problems. We hope this paper will lead to a
further investigation for industrial applications.
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